The 2-Primary Class Group of Certain Hyperelliptic Curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2-primary Class Group of Certain Hyperelliptic Curves

In a letter to Dirichlet, dated May 30, 1828 ([5]), Gauß considered the divisibility of the class number of Q( √−p) (p prime, = 1 mod 4) by 8. Many variations on this theme can be found in the mathematical literature of the subsequent centuries, either using quadratic forms or class field theory ( Rédei [15], Barrucand-Cohn [3], Hasse [10], Kaplan [12], Stevenhagen [17]). Of these, the latter a...

متن کامل

Picard Group of Moduli of Hyperelliptic Curves

The main subject of this work is the difference between the coarse moduli space and the stack of hyperelliptic curves. We compute their Picard groups, giving explicit description of the generators. We get an application to the non-existence of a tautological family over the coarse moduli space.

متن کامل

Hyperelliptic Curves in Characteristic 2

In this paper we prove that there are no hyperelliptic supersingular curves of genus 2n − 1 in characteristic 2 for any integer n ≥ 2. Let F be an algebraically closed field of characteristic 2, and let g be a positive integer. Write h = blog2(g + 1) + 1c, where b c denotes the greatest integer less than or equal to a given real number. Let X be a hyperelliptic curve over F of genus g ≥ 3 of 2-...

متن کامل

Rational Points on Certain Hyperelliptic Curves over Finite Fields

Let K be a field, a, b ∈ K and ab 6= 0. Let us consider the polynomials g1(x) = x n + ax + b, g2(x) = x n + ax + bx, where n is a fixed positive integer. In this paper we show that for each k ≥ 2 the hypersurface given by the equation

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2001

ISSN: 0022-314X

DOI: 10.1006/jnth.2001.2680